
7ID-RA172 231 LINEAR ND NONLINEAR THEORY OF THE DOPPLER-SHIFTED 1/1
I CYCLOTRON RESONANCE NA.. CU) NAVAL RESEARCH LRB
I NASHINOTON DC A H FLIFLET 29 AUG 86 NRL-NR-5B±2

UNCLSSIFIED F/O2/5 L



L--

LAW.

1.251. 11.6~

- lB

I11112 Iil14 116

IlU[ Illl |'

N: :,), . :..., V.. : , .. .,, .. ,.. , .. ., ... ..w ...... .. ,... ,.: ...........



Linear and Nonlinear Theory of the Doppler-Shifted
Cyclotron Resonance Maser Based on

(vO TE and TM Waveguide ModesN ;
N ARNE W. FLIFLET

1High Power Electromagnetic Radiation Branch
Plasma Physics Division

DTIC
01,ELECTE

SEP 23 986 ~

B

Cu,
CC

Approved for public release; distribution unlimited.

6 9 13
. .. ...:.. , . . . . . . . . . ..I .h b '1.



aS CUTY CLASSIFICATION A THO T 3 DITIBTO 3 VIA fRPR

I* RPRORTEITY ORGASIIATION EOTlUlE)s. MOEITRINGIV ORKGSZTO EOR U RS

Ge AMEL PERFORMING ORGANIZATION TNUBRS) OFIESSBL., AO MONITORING ORGANIZATION PR UBR$

Naval Research Laboratory 
fAicbe

ft. ADDRESS (01% State. &Wd ZP Code.) 7b. ADDRESS (CII% Stals. and ZAP Code)

G.NAME OF FUNDINGiSPONSORING 4b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORAIZTO OfAppkable) f

B. ADDRESS (C~ti. Staft. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT 1TASK WORK NI

Arlington, VA 22217 ELEMENTNO0 140. DN880- NO RROII_ rICESSIONNO

t . fU ncue ecrly0#6abn)I61153N 161 109-41 47-086,-00

* Linear and Nonlinear ThL'orv of the Doppler-Shifted Cyclotron Resonance Msr Basecd onTE and TM

Waveguide Modes (U)

12. PERSONAL AUTH4O()
Fliflet, Arne W.

130. TYPE Of REPORT 1 3b. TIME COVERED 14. DATE Of REPORT (Year, Montli, Day) S. PAGE COuNT
Interim IFROM 1 85 To 3/86 1986 August 29 67

16. SUPPLEMENTARY NOTATION

1.COSATI CODES IB. SUBJECT TERMS (Continut an reverie if necegaty arwid snt.If by block num~ber)

FIELD GOP SUBGROUP Cccotron resonance maser Circular waveguide

Kinetic theorv Relativistic electron energy,
GROU oniewie ne.m~yby ochnumer)(Continue on page ii)

1.ABSTRC (Condnue a oe ifnestyand idmntib~yblc t e

_ -5This paper presents a comprehensive thcory of the Cyclotron Resonance Maser (CRM) interaction in a
circular waveguide. The kinetic theory is used to derive the dispersion relationships for both TE and TM
modes. The TE mode case has been investigated by several authors, but there has been comparatively little

* work on the TM mode case. Hlowever, the TM mode interaction competes effectively with the TE mode
interaction at relativistic electron energies. The conditions for maximum temporal and spatial growth rates are
shown. The TM mode growth rates are found to vanish when the RF wave group velocity equals the beam
axial velocity (_19razing incidence4 . The single particle theory is used to derive a compact set of sell"'consistent
nonlinear equations for the TE and TM mode interactions. These equations are particularly appropriate for the
Cyclotron Auto*Rcsonance Ma.,er (('ARM) regime but applicability extends to other regimes as well. The con-
ditions for optimum efficiency are investigated for oscillator and amplifier configurations at the fundamental
and low order harmonic interactions. In the case of a beam with delta function distributions in position and
momentum the single particle results in the small signal limit are shown to he equivalent to the kinetic theory

* ~results. Design parameters are given for high power amplifier and oscillator configurations. . .

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
DUNCLASSIFIEDIUNLIMITED 03 SAME AS RPT. V3 TIC USERS iINCLASS I F IEl

118. NAME OF RESPONSIBLE iNDIVIDUAL 22b. TELEPHONE (Inluds Area Code) 22C. OFFICE SYMBOL
Arne W. Flif let 120)2-767-2409 oc 4 740

00 FORM 1473, s4 MAR 63 APR edition~ may be used until exhauted SECURITY CLASSIFICATION OF THIS PAGE
AJlothat editions are obsolete.

if .* ..?



SEUNITY CLASSIFICATtON OF T041S FAGE

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

temporal and spatial growth rate RF A~ve group velocity,
Beam axial velocity Oscillator
Amplifier i

H SECURITY CLAWFIICATION OF THIS PAGE

~A A



CON T EN TS

I. INTRODUCTION ......................1

II. DISPERSION RELATIONSHIPS FROM KINETIC THEORY ..........4

III. SINGLE-PARTICLE THEORY................................ 20

IV. CALCULATIONS...................... .................... 40

V. CONCLUSIONS........................................... 45

VI. ACKNOWLEDGEMENTS...................................... 47

REFERENCES............................................. 47

tI(. ~ 'CeS OflFor -

DIaC
I r7T

ELECTE~lP T .

SEP 2 3 1986 -.

B4

5.* .% *.



LINEAR AND NONLINEAR THEORY OF THE DOPPLER-SHIFTED
CYCLOTRON RESONANCE MASER BASED ON

TE AND TM WAVEGUIDE MODES

I. Introduction

During the past twenty years the fast-wave Cyclotron Resonance Maser

(CRM) has been the subject of considerable interest as an efficient, high

power source of millimeter-wave radiation. The versatility of the interaction

is evidenced by the variety of device concepts which have been developed,

including gyrotron oscillators and ampifiers, gyro-klystrons, and high-

harmonic gyrotrons. In these devices the radiation frequency is close to the

cyclotron frequency or a harmonic and the beam energy is in the weakly

relativistic regime. The application of the CRM interaction to higher energy

beams and to the generation of higher frequency radiation has led to interest

in configurations based on the doppler-shifted CRM interaction. Potential

advantages of such configurations include a reduced magnetic field

requirement, larger transverse dimensions of the circuit, reduced electron

beam pitch angle, high efficiency of order 25%, and increased output power

from operation at high voltage.

The theory of the CRM is quite well developed for the weakly relativistic

gyrotron regime but the relativistic doppler-shifted regime has received less

attention. The theoretical approaches used most often are the kinetic theory

based on the linearized Vlasov equation and the single particle theory. The

former leads tZ disperson equations for the interaction and near growth
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rates or threshold currents. The latter leads to both linear and nonlinear

results for the interaction parameters. The advantage of the kinetic theory

is that it can treat more general beam distributions and usually involves

fewer a priori assumptions than the single particle method. In addition to

providing the saturated efficiency, the single particle theory can be reduced

to a compact set of equations useful for scaling studies.

This paper presents a comprehensive theory of the Cyclotron Resonance

Maser (CRM) interaction in a waveguide. The circular waveguide geometry was

chosen because it corresponds to the experimental geometry most often used at

present. The kinetic theory is used to derive the dispersion relationships

for both TE and TM modes. The TE mode case has been investigated by several

authors, but there has been comparatively little work on the TM mode case.

However, the TM mode interaction competes effectively with the TE mode

interaction at relativistic electron energies. The conditions for maximum

temporal and spatial growth rates are shown. The TM mode growth rates are

found to vanish when the RF wave group velocity equals the beam axial velocity

("grazing incidence").

The single particle theory is used to derive a compact set of self-

consistent nonlinear equations for the TE and TM mode interactions. These

equations are particularly appropriate for the Cyclotron Auto-Resonance Maser

(CARM) regime but applicability extends to other regimes as well. The

conditions for optimum efficiency are investigated for oscillator and

amplifier configurations at the fundamental and low order harmonic

interactions. In the case of a beam with delta function distributions in

post~on and mcmentum the single particle resu.ts in the small signal ilm!

are shown to ;e ecuivalent to the kmnetic theory results.
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There is an extensive literature on the theory of Cyclotron Resonance

Masers and an exhaustive review will not be attempted. The initial

theoretical work on the radiation amplification mechanism was presented

independently by Twiss (1958), Schneider (1959) and Gaponov (1959). A single

particle theory applicable to the gyrotron configuration was given in an early

review by Gaponov et al (1967). An early application of the kinetic theory

was carried out by Ott and Manheimer (1975) for a planar configuration. A

nonlinear single particle theory for the planar configuration was developed by

Sprangle and Manheimer (1975) and further investigated by Sprangle and Drobot

(1977). Application of the kinetic theory to TE modes in cylindrical

waveguides was given by Chu et al (1980). The TE and TM mode interactions

have been considered for a beam with axicentered orbits by Lau (1982). A

theory of ultrarelativistic cyclotron self-resonance masers was given by

Petelin (1973). The single particle theory of CARM amplifiers and oscillators

has been reviewed by Bratman et al (1981,1983). A theory of doppler shifted

relativistic CRM amplifiers has been given by Ginzburg et al (1981). Doppler

shifted CRM oscillator configurations have been investigated by Kanavets and

Klimov (1975) and by Vomvoridis (1982). The excitation of TM modes in CRM

oscillators has been investigated by Abubakirov (1983). An induced resonance

electron cyclotron (IREC) quasi-optical maser has been investigated by

Sprangle et al (1985). Simulation studies of the CARM amplifier have been

carried out by Lin (1984 ) and by Lin and Lin (1985).

The equations and results presented in this paper should provide a

useful starting point for developing device concepts based on the doppler-

shifted cyclotron maser interaction and for interpreting on going

experiments. Although aspects of the present work have been treated

W"-"-. " -



previously, this work extends previous analyses by treating TE and TM modes on

an equal footing, considering arbitrary mode indicies and beam guiding center

radius, and harmonic number. In addition, derivations of these theoretical

results are not generally available. Finally, this work provides a starting

point for cosidering more complicated systems such as plasma filled

waveguides.

II. Dispersion Relationships from Kinetic Theory

The present analysis considers an electron beam drifting in a vacuum

waveguide with an applied axial magnetic field. Dispersion relationships for

TE and TM modes in a circular waveguide are derived using linearized Vlasov

theory. The derivation follows the approach of Chu and Dialetis (1985) in

analyzing the gyromagnetron. The calculation assumes the electron beam

current density is sufficiently low to neglect self-fields. The calculation

is based on the linearized Vlasov equation

df 1(r,p ,t) - e (E v x B') . I.f (r,,p,t) (11.1)
1p

dt

where f0 is the unperturbed distribution function to be constructed from

constants of the motion in an applied axial magnetic field, and E and B are

the vacuum wavegulde rf fields. The transverse components are given by

9t (,t) - Re{(z)e(r)e-i t  (i.2a)

4
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a (',t) - Re(T(z)b-(r)e - (11.2b)

where e and 1) are transverse vector functions given by

b a tip(II. 3b)

for a TE mode, and by

em a- (ii. 4a)

b a zx (II.4b)

for a TM mode. The scalar function 4*satisfies the Helmholtz equation

kV 2 k)-0 (11.5)

and the boundary condition

0± (11.6)

on the waveguide boundary for a TE mode, or the boundary condition

~-0 (11.7)

at the waveguide boundary for a TM mode. in Eq. (11.5) k, denotes the

transverse *avenumber and i~n Eq.(:'.6) )/^an denotes t he normal derivative.
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The vector functions satisfy the following orthonormality condition when

integrated over the waveguide cross section:

fds h.. - (1.8)

where h denotes either e or b and 6 1 1 if i-J, -aiJ 0 if i * j. The axial

field components are given by

Bz = Refik 21(z ) e -t (i.9)
z t

for a TE mode, and by

ic2k2  at'1.oE = Re{ - T(z)*e -l t  (11.10)
Zw

for a TM mode. The axial profile functions I(z) and T(z) are related

according to

T (z ) - .d (z ) .-,~~~ dz (I1

i6



-- v T-T

for a TE Mode and

11(z) - - 2 dT(Z) (11.12)
wA dz

for a TM mode. In the case of a circular waveguide, the scalar function i is

given by

ji(r) C CJ~ (k r)e1 ~ (11.13)

where Jmis a Bessel function of the first kind and k. -X= /rw. Xmn is the

nth zero of J' (prime denotes differentiation) for a TE mode or the nth zerom

of Jfor a TM mode, and r~ is the waveguide wall radius. The normalization

constant is given by

- i~2  2 ) 1/2 Jx ) (11.14)
mn x mn m(xn

for a 7E mode and by

CrM (1i x J'(x )1(.5)'

for a TM mode.

'7



To evaluate the RHS of Eq.(II.1), the unit vectors et =t/lptl

and e. = t  e z are introduced. In terms of the notation of Fig. 1, these

unit vectors satisfy the relationships

et a cos(O-) r * sin(O-e) e  (II.16a)

ea -sin(-)e r + cos(0-9)e8  (II.16b)

Using these unit vectors in Eq.(II.1) leads to

df 1  Z af
---= eEcos(O-) + E sin(®-8) + rBrsin(-e)- Bcos(-e)]} --

+ et LB cos(O-e) _ Brsin(_8 f

Pz+e(-E sin(O-6) E cos(b-O) - C Ssn(O-) a Brcos( ]-)
r 0

lp-B t 0 f
z(m. t 7)

for a TE mode and a similar expression for a TM mode. Using Graf's addition

theorem (Abramowitz and Stegun 1964), and considering the interaction with a

forward propagating wave (H(z) n Ioexp(ik z)), the expressions in brackets in

Eq.(II.17) can be rewritten as:

'S.'



E cos-S) + Esin(s-8) - Re{fl C nk e- wkz- *Mj2) S7 J (k r)
r ommn q nno

4- (k r eiq; I.1a

+ +~o(~8 -RirCkei(wtkzZ8O)

-E r 3n(*-O) +E8css9 eionkez M2

M J (k r )J (k r )e iq (II.18b)
q k nrL q mn o m~q mn L

k 1

+- -Ret--s fl~nae4~IzZ8O~2)

B 31n(O-0) B+3ca( -S) -Re{- _k HOC k el

J ( (r 0  (kanr ) e1q (I1.18d)
q q mrL q mnq L

Ik
+~ mze{L Itot-aneiwtkzze ni)

j~~maJ~ (kr )i k~~ r( qsIII.18d)

q

'"he unperturbed distribution funiction f i3 now treated a3 a function at

pand p. and the partial derivati!Ve3 are written as

9
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:~ fo 0 r f 0 !_e; - afo

a a

0 0 1 (o± e (II.19a)

1t a0  2m a9 r 0

where in the above equations fo - fo (pz.pt,4) on the LHS and f. fo(pzpt,ro)

on the RHS. Substituting Eqs.(II.18) and (11.19) into Eq.(II.17) yields

df Ree Cnkn e-i(wt-k z-mo-(s-m)i+ W)

kptat kp a

[E3J (k Mnr 0 ) J;(k r L) E( - ' M-) ooP t Yin 0Po

- '" (k r )J (k rkp( 11
"' mo'2e 3Jsm kmnroas3 mnr L ) (- zYmo-

1 k Pt Bf
-- [J (knr )Js(knrL) - J (k r )J (k r ))n---= 4}
2s-m-1 o -1mnL s-m n +nL Y 0 or0

(11.20)

In what follows, the the last term on the RHS of Eq.(II.20) involving

fo0/ar0 will be neglected. It can be shown that for configurations which

optimize the Cyclotron Maser interaction, contributions arising from this term

are negligible. Instead this term leads to the Peniotron interaction (Dohler

et al (1978), Vitello (1984), Zhang (1985)). Eq.(II.20) is easily solved

using the method of characteristics (Krall and T"rivelpiece 1973) in which the

RHS is integrated with respect to time along the unperturbed orbits,i.e.,

z(t') - z + vz o(t*-t), O(t) - + a e(t,-t)/Y, ;(t') - e (t'-t)IY.

For a TE mode this gives

10
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f = g TE) le- (wt - k z-mO-(s-m); +

f +E Re~e C k ~F TE(r iep) kvQ/r
1TE We~e - Cmnnmn smro,ptnP z  ' zvz" SO e /Y

(1I.21)

where

TE kp ZP )!f kzpt !f
F sm (r°'PtjPz J (k mnr )J;(kr )[ -m r Z o

a~ 7mL Yi a pt Yin0  3p2
(11.22)

and for a TM mode

e-i (wt-k Z-mO-(s-M)i ifm

f+ Re{-ec? C TM ( )e z 02
TM "e{eToCmn'mn 3 FsmrOptPz)'- zz e/Y

(11.23)

where

sMPk ckz) ato
F TM(r P,P ,p 3--J (k r )J (k r)C( --- k )-af0sin 0 z k nr L s-mn io s mn L Yin0c a ap

2 o

1 wmnPt

,m0 a 0oemoca

In Eq.(II.24) w,, - kmnc and 0e is the non-relativistic cyclotron frequenoy.

The dispersion relationships are obtained from Maxwell's Equations. The

wave equation for a TE mode in cylindrical symmetry is

(- 2 IaJ (

1 t V2) " 'r 1  ( ) 1e r (11.25)

c2 at2 0 r3r a r ae

where the components of the perturbed current density are given by:

ef1) . 3fd3Ptv a -efd 3pfIVtsin(O-e) (11.26a)

p
... .. .. " " ,P t'-d=,r .. f ..1.



J .efd3 pfivr - _efd3pfivtcos(O_8) (II.26b)

Similarly, the wave equation for a TM mode is

1 2 ) E z 1 " (1) (11.27)
a2 at2 to z

where the perturbed axial current and charge densities are given by:

j z ( )  _efd pfl1V z (II.28a),

P (1 ). -efdp (II.28b)

Substituting Eq.(II.9) into Eq.(II.25), multiplying by rJm(kmnr)e - i r  and

integrating with respect to r and 8 leads to:

2 e- i(k z z-ct)mn 2 2 2 22 2

c " mn z Iok 2C 2w r2 (1-m2/x 22(x )0 mnmn w mn m mn

2 w  - ()1)

1 a (1)

(ri.29)

Integrating the RHS of Eq.(Ii.2g) by parts and applying Graf's addition

theorem yields

* 12
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2- k2  k2 .- eu0  frdrdep dp ddpz
, 2 s,qmn rw (I ) Jm(xmn)

x
mn

TE iC(s-m-q); - (k
VsF5 v t kn r o mn rL

(11.30)
Finally, using the relationship

rdrptdptd~dG - r0dropt dptdide (11.31)

the dispersion relationship for the TE mode interaction with a given harmonic

s is obtained:

2 2e2Ia

k2 m z r 2 2 2

w (---) J(x )m
2 m: Ef 0xmn

FTE '

F TE(r p
J (k r )j (k r -sm 0 z (11,32)

By a similar analysis the dispersion relationship for a TM mode is obtained:

2 _-k2  _ 2e2 u" S".

W 2 =n k2 2 2 Ia -frOdrOfadptp fdpz W 3

Sr 2J 2x )m o -0 e krLw in mn 0

(VZ - kzc)FTM(rPt,P

J (kmnro)J(krmnr) (w - k V / (1133).
s-m z z

Writing the unperturbed distribution function in the form

fo a h (r )g (Pt'pz) (11.34)

13
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where a 0 is the number of beam electrons per unit volume, and integrating the

RHS of Eqs.(II.32) and (11.33) by parts with respect to Pt and pz , the TE

mode equation becomes

2 2e2 U00
_ k2  2 o rd r dptf dp ho(o)go0, z)

2 mn z r 2K 0 dOf Ptdzt0'0d0h
o w mn

2_22 2 (a- 2z z) Qkm( t sm 'm (11z35s

.3- 2 . 2 (wak s e)-2 Y k (11.35)0"z- z z

where

H 1 2knr )' 2 (krL) (II.36a)
sm J5 1 k o 3 n

2sm 2 _kr )[J2(knrL) + kmnr J(knrL J'(kmnrU)] (II.36b)

For a TE mode the coefficient Kmn is defined as

2
K - (1 - -)J 2 (x (11637)
urn 2 m mflx

The TM equation becomes

2  2  2e2 a ,
_- k2_ k f dr p dp dp h (r )g (p.,p )2 mn z 2 K o ot t zo 0 0 z

o w rn Wy2
( -18 )2('.j 2z h s e 1 2 2 2,-e' - (W - C )L H

SzQ zsin

z z

14
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-)2 ir

z - 8ph )
Y (w - kv - sff) a-m' (11.38)

zz e
where y

H Cm'J m(k mnro) okrJ s(k mnrLL (II.39a)

2 s 2 2 JS-2(kmnrL) - J+2 (k mnr LQ 3 2 1s3m(k mnro)[(k L) Js(k mn)r L 4

(II.39b)

For a TM mode the coefficient Kmn is defined as

K J 2 (xn) (II.4O)

Eqs.(II.35) and (11.38) can be simplified in the case of a cold, thin

annular beam. This corresponds to the delta function distribution function

hoCro ) ( A L- d(r - r (II.41a)
00 b r Orb)

0

I 1
go(Pt,pz) l '(pt_ Pto)(pz- p ) (II.41b)

g0 21 ~ ~'-2rt ~ o z

where Ab is the area of the beam cross section and rb is the average beam

radius. It is also convenient to Introduce the plasma frequency

2 °oe~uc 2  (1.2

2 o2 0

I5
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and the beam-waveguide fill factor

fbw A 2 (II.43)
wir

w

which is usually much less than unity. Substituting Eqs.(II.41)-(II.43) into

Eqs.(II.35) and (11.38) leads to the cold beam dispersion equations for the TE

mode:

2 2 2 2 .2s)2
inn z zo Y0

2 2

1K- Y [(w_ kzc a to H sm- (w-k zV zo)(-k zV zo- -)Q smj
mn o 0 oi z z i

(II.44)

and for the TM mode:

2 2 2_ 2 2 0 e 2(w -kc kcz  zo-

39e 2
k 2 2 z2

Kmn Y o (( - so e( (/-) 2 (w - k c ) Bto Hsm

K~s zo p s i / t i-2 ( w -zo k -2p)(1.5

-1 2 S~

- zo 8 ph~ Y 0~ z (II.J0 5

* Eq.(1I.44) agrees with the result derived previously by Chu et al (1980)

except that their result includes additional terms in the expression for

Q.., These terms are not included in the present analysis because the term

Involving af /ar in Eq.(II.20) has been neglected. In configurations

optimized for the cylcotron maser interaction these terms are small. However

in a related device called the .enlctron which involves large electron guiding

16



center drifts these terms can be important (Zhang 1985). Thus the present

analysis does not apply to this device. As discussed by Chu et al (1980), the

first term on the RHS of Eq.(II.44) is the source of the instability, while

the second is a stabilizing term. For relativistic beams with signifigant

transverse velocity, the second term is much smaller than the first and can be

neglected.

Comparing Eqs.(II.44) and (11.45) shows that the TE and TM mode

dispersion relations are similar in form but there are significant

differences. The TM mode instability tends to be reduced compared to the TE

mode case by two effects: First, the RHS of Eq.(II.45) involves an additional

2stabilizing term proportional to (w - kz v zo- se /Y) . For frequencies near

the doppler-shifted cyclotron frequency this term will be usuually be small

compared to the others and can be neglected. Secondly, the other terms on the

RHS of Eq.(II.45) include the factor (B - a) which vanishes when the beam

velocity equals the wave group velocity since v.= c 2/vph Thus, the TM mode

instability vanishes when the vacuum waveguide mode and beam mode are at

grazing incidence. This effect has been pointed out by Abubakirov (1983).

r,

The temporal growth rates for the instability at resonance are obtained

by substituting w - w 0 Aw, kz M kzo into the dispersion equations, where

(Wop k is the point of intersection between the uncoupled waveguide mode

2 k2 c 2 k 2 c2 0 (11.46)
am z

17
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and the beam mode

- kzvzo- se /Yo = 0 (11.47)

Neglecting small terms as discussed above leads to the cubic equations

2 B2  H (1.-2) 1/2
AW3 bw (p mn to sm ph (11.48)

2 K Y
mno

OI

and

2 2 - -1 2 -21/2

Aw3 bwWp Wmn 0to Ham (az- aph ( - 8 ph)  (11.49)

2 K mn Yo (I a zo /Bph)

for the the TE and TM modes, respectively. Setting 4w Aw r + iAwif

Eqs.(II.48) and (11.49) have the solutions

2 2 2 / a 2 /2
AW b w 8j Hn to ' h ~ 1/3 1.0

r 16 K Y

: and

22- -1 2 - -2 1/2
br W p w mn p to H sm z2ph ph ]1/3

16 KY (1 - zo)
0 ph

respectively, where wr is the width of the beam-wave interaction. The

temporal growth rate is given by

r

A~i ' ~r (I.IS



-. . 7 n. A -..

Inspection of Eqs.(II.50)-(II.52) shows that for a given electron beam and

waveguide, the growth rate is highest for a wave near cutoff and approaches

zero as the phase velocity approaches the free space value for both TE and TM

modes. In addition, the growth rate vanishes at grazing incidence for TM

modes (vz - vg).

As pointed out by Bratman et al (1983), this effect can be explained by

considering a rest frame moving with the group velocity of the wave. In this

frame the mode is at cut-off (kz a o) and in the case of a TM mode has only a

longitudinal electric field component. If the electron beam drift velocity

Vzo-Vgr, then in this frame the electron motion is purely transverse and the

rf field does no work on the electrons. This effect has also been pointed

out by Lau (1982) for a beam with axi-centered electron orbits.

The spatial growth rate can be calculated by substituting

- w and k - k 0 + Ak into Eqs.(II.44) and (II.45). The result can be

expressed as

1 1/3 (1153)
- 23

g zo

where 8- a ph . From Eqs.(II.50)-(II.53) the small signal spatial growth

rates expressed in units of dB/m are

2
bwp _mn to 2 2/ 2 1/6

r' (dB/m) -7.5 K 2 jkmr b) J;(k mnr L (ph-Kmn o zo(I.)
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for a TE mode, and

r 2 !) mn to J-_ 2,2 4r  1/

NrdB/m) 7.5 [ m s fb (rb' ' s  mn
K Y 32 mrL
mn o zn

( - )2/3 (a2 1) /6
ph .zo Ph (11.55)

0 a 2/3
T_B
Ph

for a TM mode. Eqs.(II.54) and (11.55) do not apply when the instability

becomes absolute such as occurs at the waveguide cutoff frequency. The onset

of absolute instability for a TE mode at the grazing incidence condition has

been analyzed by Lau et al (1981).

III. Single-Particle Theory

In this section the Cyclotron Maser interaction is treated in the single

particle approximation. A thin annular beam propagating in a circular

waveguide in the presence of an applied axial magnetic field is considered.

The electrons follow helical trajectories in the applied magnetic field about

guiding centers located at a radius ro from the symmetry axis. Slow-time-

scale nonlinear equations are obtained for the interaction with a given

harmonic.

The starting point is the Lorentz force equation for an electron

drifting in an applied predominantly axial magnetic field and experiencing

perturbing rf fields:

20
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4 W

dt 7 p xB. 0 -lelE *-p B a 112

where B is the applied magnetic field0

Bo- Boz z Borr , Bor << Boz (111.2)

and B are the rf fields, and Y is the relativistic factor

Y + 1 p2 /(m 0) 2 /2 (111.3)

To obtain slow-time-scale variables, the transverse momentum is expressed in

the form

P + ipy - 4Ptexp(i(O + 0)] (IiI.)4)

where pt and 0 are the slowly varying magnitude and phase, Q is the reference

cyclotron frequency

JeJB oz (zo 0

Y 0 m 0II5
Yi 0

where z- z(to), and T - t - to where to is the time the electron enters the

interaction region. Substituting Eq.(III.41) into Eq.(III.1) and neglecting

drifts of the electron guiding center due to the rf fields, the equations of

motion can be expressed in the form

21
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•p ;B..

dp i [(a- ia ) ei(QT + 0) (a + ia )e-i(QT + 1 tPz I Boz-(a *)j 4- -

dt =2 X- x 2m Y B o zy0 OZ

(III.6a)

Y

db 1 iUat+O) -iUaT+-)' 1 0
d - 2 [(ax - iay)e ) (a +ia)e -  . (1 - -)dt 2 x y Pt

(III.6b)

dp *2 3B
az t 1 oz (III.6c)
z m Y B oz0 OZ,

In the equations which follow the magnetic field gradient terms will be

dropped corresponding to the case of a constant applied axial magnetic

field. Substituting Eqs. (II.2)-(II.4), and (11.9)-(11.10) into Eqs.(III.6)

leads the following equations of motion for a TE mode:

- Re{- (n -v T)(L ti(e l+r_-L e )e-t

4.dt 2 z

(III.7a)
04 - RefijejC(1T-v T)(L -_ -i(Q+ iU+r

dt 2pt +

-2 - l!,J e-iCt} - , ( - -) (III.7b) Z

r

" -z-Ret--T(L+e -i. +)* Je~T~)ei} rdt 2 -(II.-c)

and for a 7M mode:

Pt 1 -(i) +)) - iwtj .
- R e{-!eI 1 .7 (L 4e - 'ue )e.3a)

F. 4



do. 1_ Re{-eIC-v T)(L Le-i(QT+O) ,e i O) )e-'t } - () -
dt 2pt

(III.8b)

dp~
I 1 Re-ijejT[vt(L .,e-i'. )L ,e£(.))

dt2 2

+2 -- } (III.8c)

where

L+* e • - .1 L )* (III.ga)
3r r 3e

L - e - - i a (III.9b)

By using the expression for the scalar function j given in Eq.(II.13)

in Eqs.(III.7) and (111.8), applying Graf's Addition Theorem for Bessel

functions, and considering the interaction with the sth harmonic of the

cyclotron frequency, the cyclotron maser equations of motion for a

circular waveguide can be written in the form:

dpt Js(k mn rL )

" -le1Cmn (krnr& )  - Re{(I - vzT)e (III.10a)
M-5M

dAj mn t HC iA}
dt J (k ) - (k [ )Rei[-v T -]e

- ,-dt Pt mn m-smn o rL a mn ,. z s owY°

+ W- sQ (III.10b)
Y

f
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3-t ''lv~ n (k mno mn L RejTeiA (III.10c)

for a TE mode, and

dP t Sll k r)3J( r )Reji(T - v TVe± Ai

dA Le C ) JJk r J(knr L) -i

Tt' p m J k n ra 3 _Ret(H T)e±A

dpZk c 2Y -iA
T- - Ielvt(l - S~ on) J( r sI- (k r)RetiTe

WO0 M- n- r 3 L (III.llc)

for a TM mode; where the phase variable has been replaced by

A - (w -W +Qt' wt0- so - (m - s)-= (111.12)

In Eq.(IltI.1Z) 0~ is the polar angle off the guiding center position.

Besides the Lorentz force equations, it is useful to consider the

energy equation

* de
leS69(1-3

where e is the electron energy. Using the prescription described

above, Eq.(III.13) can be written in the form
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de 2-- Re fn(z)[L e-i(12 +)+ L ei(Q +

(II.14)

for a TE mode, and as

di . JL Re { {[ v dT (L e- ( 'T + C-L e i (O' + ))
d- 2 U tdz +

-21 2! v k 2T]*eie1  (111.15)
W* z t

for a TM mode. For a circular waveguide and a single harmonic, these

equations reduce to

de ( akmrL) -iA
3t- _elvtcmnJ (k ro _S- Re {fle -  (111.16)

m-s I

and

de 2k 2 c2 v y2
dt lelv C J (k r Js(k nrL)Re[--- dT + in T]e-iA}
3t t mn Mrsmn o rL s dn LsWo

(111.17)

respectively.

As pointed out by Bratman et al (1981), the relationship

d o18)
RE phPz • a

holds in the case of the Cyclotron Maser interaction for a constant

amplitude free space wave of the form
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;[= o ikzz  (11.19)
0

where H. is a constant. By substituting Eq.(II.11) into (III.10c),

using Eq.(III.19), and comparing with Eq.(III.16), Eq.(III.18) is

readily verified for TE modes in a waveguide. Eq.(III.18) is not in

general true for TM waveguide modes as can be seen by subtracting vph

times Eq.(III.11c) from Eq.(III.17) to obtain:

(1-0-2d () _ lejv CnJ (karo) J (k r )v phd- - Vph~z) li-svz

Tt' ph Zt nM ms o r L s mn L ph 8-!Z

ph

VzAY iToe-i(A-k z)j (111.20)

zo 0

where 0 is the kinematic phase shift parameter0

1 zo so
1 -ph W (111.21)

D is the constant wave amplitude, and 8ph - Vph/C, 8z a vz/a.

Eq.(III.19) shows that Eq.(III.18) holds for the TM mode interaction

for a constant amplitude wave only when vph - c, the free space limit.

It is convenient to introduce the following normalized momenta and energy:

Pt - Pt/(Yomoc) (III.22a)

Pz a pz/(Yom 0c) (III.22b)

w - Y)/ (II.22c

020

... . . . . . .* .



the normalized axial coordinate

Z - Wz/c (111.23)

and to introduce the slowly varying momentum phase

e - A - k z (111.24)

Transforming to spatial derivatives, the TE mode energy and phase

equations for a constant amplitude wave can then be written as:

dw te 3; e~ mn, L 9
7 J (kmnr r- Re{n e-t (1II.25a)

d_ 1 -2 " sel 1
Zw s[ -ph -a -

3~c -2p p2 ,2

C J (k r ) J(k r w(1 - - Pt ]Re{iAoe-I
M- no r L r, BLph) a z

ph (III.25b)

Using conservation of energy

2 m24 22, 22 11.26)O UC PC p p c'II.)
0 t Z

and Eq.(III.18), the momentum amplitudes can be expressed in terms of

the normalized energy as follows: N.
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p [2 2( s"-2 2f/
P- [B2 - 2(0 - *-w (1 - B$- )w2  ' (III.27a)

toph ph

P - - (III.27b)Z ZO 8ph

For interactions with non-constant amplitude waves, such as occurs in a

traveling wave amplifier, Sq.(III.18) does not hold for either TE or TM

modes. In the case of a TE mode, a slow axial variation of the wave

amplitude affects the axial momentum according to:

Po UJ (k r Wl~E 1- 7o W emnJ(knro) r L  Re Ii e- ; (111.28)

where q' is defined by

q' P; * W/ph (111.29)

For a slow variation in wave amplitude, it is sufficient to include

the axial momentum correction q' in the phase equation according to:

de 1 _8-2 (q'- Bzo +
wTlB-h -Z BS0 ph 8 Y Mlel - m 17Cmfkn o

- - -o w ( - ) 0 -2
- r) 2ph - h B O JRefin e' 19

(1- O

- (q' -_) Re{ e-el (111.30)
ph

A similar analysis leads to somewhat more complicated equations for the

TM mode interaction:

V *%W
4
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. L C J (k r) J(k r)
dZ Yo0 mo 0pz mn rstmn o rL s mnL

-11 -2

a-p1- q" + - (1 -_= ( --2

q p 8p h 8  2  zo) dT

1 - B/Bph ph JRef iT0e- ei} + Re{-0 eie}]

(III.31a)

d2 1 [a w(1_0-2 ) B )1B C (k J s mnrL )

dZp o ph Z) - ( q zo ph Yooaptp (n r-s n 3r

dT
ze 0 tzL

-1 RefT e -  } - Reti _ e 1] (III.31b)
ph 0 I)

ph ph 8ph

Re { 01e-ie} (III.31c)

dp, [ Cn B (-Be}. a _MJ(k r )I-- J(k r )[ 8 0 -0Z YomoW p£ I smn o r sL ph 0

0 0 Z MS L 1- -Z

pph
(III.31d)

In the CARM regimne (Bratinan et al 1981 ) the phase velocity is close

to the speed ot light and the following conditions apply:

-28p «<1 (III.32a)

29 5.
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B- 2 << 1 z° (III.32b)

ph ph

Under these conditions Eq.(III.18) holds to a good approximation for TM

modes so that that momentum amplitudes can be calculated from

Eqs.(III.27). Using this fact and neglecting terms proportional to

( - )-2/(I - Bz/B ), the equations or motion for the CARM regimeph zph'

become

dw lei p C J (k ro ) LRea e (III.33a)
dZ --- m; .7 mn Mms aroL 0el s ) III.33a}

slel a
1- 0 - C J (k r) -J(k rL)RetiToe- } I

7z om OW 0z mn n 0r 3m

(III.33b)

* for a TE mode and

(-- - Bdw . lei Lto) pC J (k r ) J (k r )Re{iT eie
dZ Ymow p pzo - mno rL s mnL o

ph (III.34a)

*de . 1 W 0-2 '
0 wp' 0ph) ZO

z ph

-(B - 0 5Z7-- CmnJ (k nro) - Re{T el"'

y0 m0 w h z - rL(III.3Z4b)
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J dT ie

dZ Y 0m 0WPZ mn M5mn o r L n( r J( fll)Re{'-e- 1 (III.3L4c)%

for a TM mode, where the effect of non-constant wave amplitude is

neglected except in the phase equation. In Eq.(III.33b), q' is given

by Eq.(III.28). To further simplify the equations, the following

variables defined by Bratman et al (1981) are introduced:

u =r (- - w (III.35a)

tph

0 o

2 ( -

oh

2 6 0 (III.35b)
TO -2 o-
to ph

82
b - 2 toB (III.35c)28.zo a ph 0, .,zo /a ph

2 ph

0 4 0 B_2z

to ( Bph~

In this notation the momentum amplitudes in the CARM regime are given

by:

P, 8V _ (III.36a)

t to



p ~ (1 - bu) zo(III.36b)

The parameter b characterizes how strongly the axial momentum and velocity

change with change in electron energy.

In Cyclotron Maser interactions with the fundamental or low order

harmonics the electron Larmor radius is usually small compared to the

transverse dimensions of the waveguide mode. In this case the Bessel

function of order a - 1 occurring in the equations of motion may be

replaced by the leading term of the small argument expansion with

little loss of accuracy. In terms of the present notation

s8 -2 S'2
J -(k mn)r-Lph to
s-1 2 31 (S-i )!( L-S1

~ph (111.37)

The wave amplitudes are normalized according to:

(C mn 2 ~m_;kro) 8 S

F 3(TE) -4j.1 B Ch ph Stol2~ }s-1 1
-2 0 to p

8ph

(111.38)
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for a TE mode and

pje zo Bh s

Fph C J (k r p T
yc 3 - B; t
m a 03 (1 a- 2 /2 mn Mfl mn o 2st 0 B o

0 0 to phs2 ! (1-- 8ph

(111.39)

for a TM mode. Using Eqs.(III.35) - (111.39), the CARM energy and

phase equations of motion may be reduced to the following form:

__u]Sl
2 Re s-je }

du . [I - Re[F e i (III.40a)
dC 1 - bu .

S

d1 c-jelde _I bq s ( - R- 1 eI } ]:

de (1-bu) [A - u -bq + u (III.40b)

for TE modes, and to

du _ E-u)s12  -ie
d- 1-bu Re{iF e (III.41a)

d2 1 [4 - u - bq (1-u) Re(Fse-i (III.b)
- 1-b'U

for TM modes. For non-constant wave amplitudes, the axial momentum

correction is given by

Aq 1-u s / 2  dF
- - Re i e- to (III.42)

dr. I-bu

31 **~S ~ ** ~ ** 5~

*, -. **"-... , .';" ,", - . v . . .. '," ,,,v ," "', -,.",." . -- *. -,,- -. -.. .. .. .'. -... .-v .- "--v ''':'''



for TE modes and by

Szo)I

- a ph [ su1/2 dF5 aP, Re{- e (111.43)
d ph - Z) (1-bu)

for TM modes.

The above equations describe the motion of an electron subject to

prescribed rf fields. In a self-consistent formulation the wave

amplitudes should be calculated from the induced AC current and charge

densities. Assuming a time dependence of the form exp(-iwt), the

following wave equations are obtained from Maxwell's Equations

appropriate for TE and TM modes, respectively:

2 2

(V2  0) Et iUGWz (III.4ia)o ti
2 w21

(!9 ) z iU (111.44b)
0

where in Eqs.(III.44) E and E are complex phasors and Jr, J, and p are

the fundamental Fourier components of the AC current and charge densities.

Using the prescription outlined by Flyagin et al (1977) and by Fliflet et al

(1982), the following wave equations for the z-dependent mode amplitudes I

and T can be derived:

2 22 f2  P 'Js(kmnrL ) iA(7 kz a 21uo mnJ (k mn r  o dA 0  p7 e
z- 0 mn L~i

(U1.4Sa)
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2 2 ZuI( - ) 21r ~ ~ J(
(V +k )T 0 ph zo n J -I (k r o f s r e e

(- zo) -so Pz L

ph (III.45b)

where the Eq.(45a) applies to TE modes and Eq.(III.45b) applies to TM .4

modes. Considering the interaction with a co-propagating wave, i.e.,

H - IIexp(ik z), T - Texp(ik z), neglecting second derivatives ofl

H ° or T O , introducing normalized variables, and approximating the Bessel

functions of order s, leads to the following equations for the

normalized TE wave amplitude:

dFs 1 2aw ,/i - e 
.dT I T de e-b (111.46 ) -.

IE 0 1b

and for the TM wave amplitude:

-- 2w , g-% -i I d lbu e (I11.47)
d o

where the normalized current parameter is given by:

8 3

T woej o__ p_ ( a 3 -- , s-1 2
TE mocY o It 8mr-s UfO (1 - ph ) 2Ss (ITE4 -Mn02 to_oysM- 3 zo) ,

oto ph 1~2
8 ph

(III. 48)

for a TE mode and by:

I 7M h 0 (II .49)T zo)2 TE

8 p
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for a TM mode. Eqs.(III.40), (111.42) and (111.46) form a self-

consistent set for the TE mode traveling wave interaction. Similarly,

7qs.(III.41), (111.43) and (1II.47) form a self-consistent set for the

TM mode traveling wave interaction in the CARM regime. Although the

derivation has been carried out for the CARM regime, it is readily shown that

the above equations apply in the gyrotron limit as well (b 4 o, 8ph -a).

It is of interest to compare the results of single particle theory

with the results of the kinetic theory derived above for a tenuous beam

with 6 - function distributions. Expressing the wave amplitude in the

form

Fs - F soe-i(r - A); (111.50)

solving the single particle equations in the small signal limit and

averaging with respect to the initial electron phase leads to:

(r - a) (r2  - 0 (111.51)
2 2 2

for a TE mode, and

(F - A) (r b(i - <c)I - r + 0 (111.52)2 2 2

for a TM mode where

( - __Z°

- )
$ph. (111.53)

aph 8=0
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When the beam current parameter is small, Eqs.(III.51) and (111.52) reduce to

(r - a) r2  (11.514)

which - as pointed out by Bratman et al (1981) - has the same form as

the well-known Traveling-Wave Tube amplifier dispersion equation

(Gewartowski and Watson, 1965). The normalized growth rate at

resonance ( A - 0) is then given by

r- [ (111.55)

2 2

for either TE or TM modes.

By substituting unnormalized parameters into Eqs.(III.55) and

(111.62) and using the small argument approximation for the appropriate

Bessel functions in Eqs.(II.50) - (11.51), it is readily shown that the

single particle TE and TM mode growth rates agree with the kinetic

theory results given in Eqs.(II.50) - (11.53).

In terms of the present normalized parameters, the electronic

efficiency is given by:

2 <u(v)>
to

-1 (111.56)

2 ( _ ) (1 - Y_)
Bph 0
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where m is the point where the interaction terminates and < > denotes

averaging with respect to the initial momentum phase angle. The total time-

averaged power of a traveling-wave integrated over the waveguide cross section

at any point is given by:

k

.- 2 7-il~ol 
(111.57)

In a high Q oscillator, the RF field axial profile is essentially

determined by the cavity and not by the interaction with the beam. In

this case the equation for the field amplitude can be neglected and the

efficiency can be found by integrating the equations of motion in a

prescribed cavity RF field. The required beam power is found by

applying the power balance equation

- WW (111.58)

where V. is the beam voltage, Q is the cavity Q factor neglecting wall

losses, and W is the cavity stored energy which is given by

! • Out  zout

W C f dzlU(z) 2 dzIT(z)1 2  (111.59)
2 2 0
Z'n in

For a cavity defined by a uniform waveguide terminated by sections of

high reflectivity, the field amplitude is uniform and the stored energy

is given by:

2.. 0 . 0L111' 2 
(111.60)
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The small signal efficiency for a uniform field amplitude and the sth

harmonic is given by:

a2 p 2 [-(s-b)-
n(ss) to s (111.61)

4(1 zo) ( I " )

ph

where

1 - 0o05K-

Cos 2 K 
(III.62a)

K

M doM sinK 20 (III.62b)
d K  2 0kK K

S . AU (III.62c)K!

82 -2B t o ( 1 - B )
to0- ph wIL
O - )(III.62d)

Sph

and L is the interaction length. The parameter *K corresponds to the

parameter A defined by Chu (1978). Considering the small signal

limit, substituting Eq.(III.61) into Eq.(III.58), and transforming to

normalized variables leads to the following expression for the

threshold beam current for either TE or TM modes:

28 0 S

i zo ph a ph (111.63)
thr 2 -2 (Q8tou (1 - Sph) L-(s-b)o- (1-bA)uo']
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The Q factor for a cavity with uniform wave amplitude is given by
h

Q-28 _L 1 (111.64)
ph c (1 - R 1R 2

where R1 and R2 are the reflection coefficients at the cavity input and

output. Substituting Eq.(III.64) into (111.63) leads to

a 1 - R1 R2Itr2U 2[-(s-b)o - (1 - b&)Uo'] (1.5

IV. CALCULATIONS

A. High Q oscillator

Applications of the present theory have been considered by several

authors, therefore only selected calculations are presented here.

In the case of a high-Q oscillator with a uniform axial magnetic

field, the electrons interact with an approximately constant amplitude wave

and the normalized efficiency n - <u> depends on only five parameters: the

wave amplitude FO, the interaction length u, the detuning parameter 4, the

harmonic number s, and the parameter b which characterizes how strongly the

electron longitudinal velocity changes with a change in electron energy during

the interaction. A theory of the quasi-optical gyrotron which corresponds to

b - 0, involving four parameters was obtained by Bondeson, Manheimer and Ott

(1983). In the following calculations the detuning parameter is treated as an

optimization variable. Figure 2 shows the normalized efficiency n as a

function of b for several values of Fo . The calculations are for s-1 and are

optimized with respect to . The corresponding values of 4 are given in
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Figure 3. Figure 4 compares efficiency of the first four harmonics for Fo -

0.2 and optimized A and u. The optimum interaction lengths for the higher

order harmonies (not shown) are only slightly different from the results for

s-1. The actual efficiency is obtained for these results by using Eq.

(111.56). Note that the results given in Figures 2 and 3 are independent of

mode, electron energy and orbit pitch angle, and the wave frequency and phase

velocity.

The limit b - 0 corresponds to the gyrotron interaction where the

wave is close to cutoff and the wave frequency is approximately equal to the

relativisitc cyclotron frequency. This limit gives the highest normalized

efficiency ( n - 42%) and has been extensively investigated. As is well known

the efficiency for this limit can be enhanced considerably by contouring the

axial profile of the RF field. Normalized efficiencies of order 80% have been

reported (Gaponov et al 1981).

As discussed by Bratman et al (1981,1983), the Cyclotron Auto-

Resonance Maser (CARM) regime corresponds to b a 0.5. The single-particle

efficiency is optimized (n spS 0.5) by choosing St" I/Y. A large doppler

upshift - W S Y 2 0 where Q is the relativistic cyclotron frequency - and good

bunching efficiency (characterized by n ) occur when in addition
-2 < -2.

(1-Sph ) < Figure 2 shows that a maximum normalized efficiency of 36% is

obtained at b - 0.5 for Fo - 0.2, A - 0.6, and i - 8. This result was given

previously by Bratman et al (1981). One expects that considerably higher

efficiencies should be achievable by enhancement techniques similar to those

used in gyrotrons.
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Another regime of doppler-shifted operation has been investigated by

Vomvoridis (1982) for the oscillator and by Ginzburg, Zarnitsyna, and

Nusinovich (1981). In this case 8 - (1-Yol)/B andzo 0 ph
82 2S-2 y 1  1 (1Y 1  (1-)-2 (1-Y-2). An interesting feature of this choice
BtoSpho 0 0 ph 0

is both 8t and 8z can vanish simultaneously, that is, the total kinetic energy

is available to the interaction (Vomvoridis 1982) and the single-particle

efficiency approaches 100%. In this regime b - 1 and, as shown in Figure 2,

the maximum normalized (and unnormalized) efficiency is 22%. As in the other

regimes, higher efficiencies should be achievable through enhancement

techniques.

Based on these calculations design parameters are given in Table I

for a 100 GHz CARM oscillator experiment using 600 kV beam and choosing

8 toa I/yo"

B. Traveling-Wave Amplifier

Calculations have been carried out to investigate a CARM regime

amplifier. Figure 5a shows the normalized efficiency as a function of

normalized current for b - 0.454 and Fo - 0.0018. The results have been

optimized with respect to A and interaction length z. As pointed out by

Ginzburg, Zarnitsyna and Nusinovich (1981) the saturated efficiency and wave

amplitude are independent of the input amplitude when the input amplitude is

sufficiently small. The results shown in Figure 5 represent this limit. The

values of saturation wave amplitude and interaction length corresponding to

Figure 5a are shown in Figures 5b and 3c, respectively. Except at low beam

current ( < 0.05) which re, ires smaller values, the optimum letuning
0
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The effect of increasing the input wave amplitude for a given beam

current is shown in Figure 6 for a normalized current of I 0 0.60 and b -0

0.47. The results have been optimized with respect to 4 and n as in Figure

5. Figure 6a gives the normalized efficiency dependence on the input wave

amplitude. As noted above, the efficiency is essentially constant over a wide

range of input amplitude, then rises and saturates at a power gain of about 10

dB. The values of saturation wave amplitude and interaction length are shown

in Figures 6b and 6c. The optimum detuning is A f 0.4.

The design of a high power CARM amplifier operating in the TEll

circular waveguide mode with parameters similar to the NRL VEBA free electron

laser experiment (Gold et al 1984) has been considered. The design parameters

are given in Table II. The beam energy is 1 MeV, the current is 500 Amps, the

waveguide radius is 5.4 mm, and the design operating frequency is 94 GHz.

Figure 7 compares the small signal spatial growth rates for the TEll and TM0,

modes as a function of wave phase velocity (and frequency) in the design

waveguide (rw - 0.54). The growth rates were calculated using the parameters

of Table II and Eqs.(II.54) and (11.55) with small argument expansions for the

Bessel functions with argument kmnrL. The guiding center radius was taken to

be zero for the TEll mode and as 2.1 mm for the TM0 1 mode. Figure 7 shows as

discussed above that the TM01 growth rate vanishes at the grazing incidence

cn i ( 0.88). Except for this effect for TM modes, the growth

rates increase monotonically as the wave approaches the cut-off condition.

This calculation assumes the instability is convective, at some point it

becomes absolute and the calculation is invalid (see Lau et al 1981).
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The peak output power of the design is 110 MW at an electronic

efficiency of 22% (<u> - 0.34). The normalized interaction length is 4 - 15.4

for an input power of 1 kW (Fo a 0.0019) and the total gain is 50 dB. The

small signal and nonlinear efficiencies are plotted as a function of the

detuning parameter A in Figure 8. The small signal result has been scaled by

a factor of 10 for clarity. Both curves were calculated numerically, the

small signal results correspond to an input power of 1 W and the nonlinear

results correspond to 1 kW. The FWHM linear and nonlinear bandwidths are 10%

and 3%, respectively. Note that the bandwidth cannot be directly obtained

from Figure 8 because A is not proportional to frequency. The bandwidth

could be increased by decreasing the total gain. Figure 8 shows that the

region of maximum nonlinear gain is signifigantly detuned from the region of

maximum small signal gain.

As a final example a 2 THz second harmonic (s-2) CARM amplifier is

considered. Operation at high power at this frequency requires that the

waveguide transverse dimension be much larger than the radiation wavelength

(A-0.15 mm). This can be achieved partly by operating in a higher order mode

but primarily by locating the beam line - waveguide mode intersection point

far above the waveguide cut-off. This ca:.e represents the "auto-resonance"

limit, however, as discussed above the rate of gain is reduced leading to a

longer interaction length and increased sensitivity to beam velocity spread.

In addition, there is an increased probability for exciting spurious modes.

Nevertheless, this design regime is of interest due to the lack of high power

sources at THz frequencies.
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The waveguide radius is chosen to be 0.5 cm which allows an annular

electron beam of radius 0.4 cm, and the operating mode is chosen to be the

TEl0,1 whispering gallery mode. This corresponds to a wave frequency to cut-

off frequency ratio of w/wco" 17.8 or a wave phase velocity of 1.0016c. For a

1.2 MeV beam interacting at the second harmonic and with 8to- YI the doppler

upshift factor is w/sQ - 10.2. The required magnetic field is 115 kG which is

within the state-of-the-art for superconducting solenoids. The design was

optimized for a beam current of I kA and assumes an input power of 1 kW. The

maximum efficiency and power were calculated to be 19% and 223 MW at an

interaction length of 134 cm. The nonlinear instantaneous bandwidth is

approximately 0.04% and the total gain is 53 dB corresponding to an average

gain rate of 0.4 dB/cm. The design parameters are summarized in Table III.

The normalized parameters for this design are b-0.518, I MO.0044,

Fsat-O.050, u-92, A-0.15, and <u-0.28.

V. Conclusions

A comprehensive theory of the Cyclotron Resonance Maser interaction in a

waveguide has been presented, including the kinetic theory and single particle '

theory approaches. The interaction has been examined for both TE and TM

modes, and equations have been expressed in a simple form which elucidates the

physics and facilitates calculation. The kinetic theory was used to derive

dispersion relationships for generalized beam parameters and to calculate

growth rates for a cold beam. The single particle theory was used to obtain

linear and nonlinear results for a cold beam. The present results confirm

that the form of the equations of motion and the dispersion relationships is

the same for TE and TM modes in the CARM and gyrotron regimes. The theory

45

.. o , , , ,. .. ,.' .. . ,. .- .- -- % . . .. . .,....%V ' .
.1. % "-. .....-.-....-.-.-.... .-.. -'



provides the starting point for treating electron beam self-field effects, the

use of plasma filled waveguides, and the treatment of time depencent

phenomenea.

The calculations carried out for the oscillator configuration as a

function of the parameter b apply to essentially all possible CRM

configurations including gyrotrons (b - 0), CARM's (b a 0.5), and highly

relativistic doppler shifted configurations with high pitch angle beams

(b m 1). Comparison of the latter two regimes shows that normalized

efficiency is higher at b a 0.5 than at b = 1, but the single particle

efficiency is higher at b - I (nr 3 100%) than at b - 0.5 (nsp 1 50%) . Thus

the actual efficiency is similar in the two cases (20-25%).

These calculations show that the doppler-shifted cyclotron maser

interaction is an attractive candidate for use in high power, high frequency

sources. Nonlinear efficiencies of order 25% are feasible and this can be

increased by enhancement techniques. The CARM regime appears to offer an

attractive combination high interaction efficiency, large doppler upshift, and

low beam orbit pitch angle. Examples of amplifier and oscillator

configurations are given. These examples show the potential of the CARM

configuration as a high power millimeter-wave and sub-millimeter-wave source

operating at the 50-200 MW level. The present calculations do not account for

beam temperature or velocity spread. CARM amplifier simulation studies by Lin

and Lin (1985) indicate that less than 1% axial velocity spread is required to

achieve high efficiency in a configuration similar to the present 94 GHz

example. The shorter interaction length of the CARM oscillator should render

it less sensitive to velocity spread: the calculations of Kanavets and Klimov
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(1975) suggest the transverse velocity spread (standard deviation) should be

less than 5%.
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Table 1: 100 GHz CARM Oscillator Parameters

Electron Beam Energy 600 kV

Optimum Beam Current 250 Amp

Threshold Current 60 Amp

Initial Transverse Velocity 0.46c

Initial Axial Velocity O.76c

Operating Mode TE1 0.,1

Cavity Length 4.6 cm

Cavity Wall Radius 1.2 cm

Annular Beam Radius .1 cm

Wave Phase Velocity 1.13c

Cavity Output Reflectivity 0.9

Cavity Q 2200

Magnetic Field 23 kG

Interaction Efficiency 25 %

Output Power 37 MW
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Table I: 94 GHz CARM Amplifier Parameters

Electron Beam Energy 1 MeV

Optimum Beam Current 500 Amp

Initial Transverse Velocity O.33c

Initial Axial Velocity O.76c

Operating Mode TE11

Interaction Length 54.5 cm

Waveguide Wall Radius 0.54 cm

Solid Beam Radius 0.3 cm

Wave Phase Velocity 1.015c

Magnetic Field 13.2 kG

Saturated Etticiency 22 %

Output Power 110 MW

Small Signal Bandwidth (FWHM) 10 %

Large Signal Bandwidth (FWHM) 3 %
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Table II: 2 THz Second Harmonic CARM Amplifier Parameters

Electron Beam Energy 1.2 MeV

Optimum Beam Current 1 kA

Initial Transverse Velocity 0.3c

Initial Axial Velocity 0.9c

Operating Mode TE1 0,1

Interaction Length 134 cm

Waveguide Wall Radius 0.5 cm

Annular Beam Radius 0.4 cm

Wave Phase Velocity 1.0016c

Magnetic Field 115 kG

Saturated Efficiency 19 %

Output Power 223 MW

Large Signal Bandwidth (FWHM) 0.04 %

Average gain rate 0.4 dB/cm
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